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FORCED RESPONSE OF A SEMI-INFINITE
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Forced motion of a semi-infinite plate of parabolically varying thickness is
analyzed by the eigenfunction method. Analysis is based on classical theory. An
exact closed form solution is obtained for free vibration. Plates clamped at both
the edges and cantilever plates subjected to constant and half sine pulse loads
uniformly distributed over a portion of the plate are taken as example problems.
Numerical results computed for the transverse deflection are plotted in graphs.
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1. INTRODUCTION

The study of vibrations of plates of non-uniform thickness is of greater importance
because of their applications in fields such as civil engineering, aerospace
engineering, machine design and design of earthquake resistant structures etc. A
few papers available on forced vibration/motion of beams of variable thickness
are as follows:

Mayer Jr. [1] considered the vibration response of geometrically non-linear
elastic beams subjected to pulse and impulse loading. Laura et al. [2] have analyzed
the free and forced vibration of beams of non-uniform cross-section by using
Rayleigh’s optimization technique. Lee et al. [3] have analyzed the free and forced
vibration of non-uniform beams by expressing the frequency equation and
dynamic forced response in terms of the fundamental solution of the system.
Takahashi and Yoshioka [4] have presented the analysis of vibration and stability
of a non-uniform L-shaped beam subjected to a tangential follower force
distributed over the centerline by use of the transfer matrix approach. Bapat and
Bhutani [5] have considered an exact general approach to study the free and forced
torsional vibrations of the a system with N stepped changes in its thickness. Gupta
and Goyal [6] have analyzed the forced motion of a semi-infinite plate of linearly
varying thickness by the eigenfunction method.

In the present paper, the motion of a semi-infinite plate of parabolically varying
thickness is considered by classical theory. An exact closed form solution is
obtained for free vibration. The forced motion of the plate is analyzed by the
eigenfunction method. Plates clamped at both the edges and cantilever plates
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subjected to constant or half sine pulse load uniformly distributed over a portion
of the plate are considered as example problems. The numerical results computed
for transverse deflection for various values of the taper constant, time and space
variables for loads uniformly distributed over the whole plate are plotted in the
graphs. The variation in thickness is taken in such a way that the average thickness
of the plate remains constant.

2. EQUATION OF MOTION

A plate of infinite length, finite breadth a and thickness h varying parabolically
along the breadth is considered. The plate is referred to as cartesian co-ordinates
by taking the y-axis along the infinite length, the middle plane of the plate in the
plane z=0 and the two edges in the plane x=0 and x= a.

The non-dimensional equation of motion of the plate according to classical
theory is taken as in reference [6]

H3W,XXXX +6H2H,XW,XXX +3(2HH2
,X +H2H,XX )W,XX

+12HW,TT =12P(X, T), (1)

where X= x/a, W=w/a, P= p(1− n2)/E, H= h/a, T= tzE/(1− n2)ra2 and w,
r, t, p, E and n are the transverse deflection, density of the plate, time, load per
unit area, Young’s modulus and Possion’s ratio respectively. The comma followed
by the variable suffix denotes differentiation with respect to that variable.

The parabolically varying thickness of the plate is taken as

H=H0(1+ bX)2, (2)

where H0 = h0/a, h0 is the thickness of the plate at x=0 and b is the taper
constant.

3. FORMAL SOLUTION

3.1.  

For free vibration, one takes

W(X, T)=Wj (X) eiVjT, j=1, 2, 3, . . . , (3)

where Vj and Wj are the circular frequency and mode shape function respectively
in the jth normal mode of free vibration.

Substitution of equations (2) and (3) in equation (1) after putting P=0 yields

(1+ bX)4Wj,XXXX +12b(1+ bX)3Wj,XXX +30b2(1+ bX)2Wj,XX −v2
j b

4Wj =0,

(4)

where v2
j =12V2

j /H2
0b

4.
The closed form solution of equation (4) comes out to be

Wj (X)= (1+ bX)−1·5Sj (X)Dj , (5)
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where

Sj (X)= [cosh {l1j log (1+ bX)} sinh {(l1j log (1+ bX)}

× cos {l2j log (1+ bX)} sin {l2j log (1+ bX)}],

l1j =0·5[17+ {4+vj}1/2]1/2, l2j =0·5[−17+ {4+vj}1/2]1/2,

Dj =[d1j d2j d3j d4j ]' is the arbitrary constant vector and prime denotes the transpose
of matrix.

The orthonormality condition for the normal modes of free vibration can be
taken as

g
1

0

HWjWk dX= dj
k , (6)

where dj
k is the Kronecker delta.

3.2.  

The solution of the force motion equation (1) is assumed in the form

W(X, T)= s Wj (X)gj (T), (7)

where summation over j is taken from 1 to a.
Substitution of equation (7) in equation (1) and use of equation (4) gives

s HWj (gj,TT +V2
j gj )=P(X, T). (8)

Using orthonormality condition (6), one gets

gj,TT +V2
j gj =Gj (T), (9)

where

Gj (T)=g
1

0

Wj (X)P(X, T) dX. (10)

The solution of equation (9) is

Vjgj (T)=Vjgj (0) cos (VjT)+ gj,T (0) sin (VjT)+g
T

0

Gj (t) sin {Vj (T− t)} dt,

(11)

where

gj (0)= s H g
1

0

W(X, 0)Wj dX, gj,T (0)= s H g
1

0

W,T (X, 0)Wj dX. (12)
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4. EXAMPLE PROBLEM

4.1.  

The initial conditions are taken as W(X, 0)=W,T (X, 0)=0, which gives

gj (0)= gj,T (0)=0. (13)

4.2.  

The following two types of external loads uniformly distributed over a portion
of the plate are taken:

4.2.1. Constant load (CL)

P(X, T)= [P0/(X2 −X1)][U(X−X1)−U(X−X2)]U(T); 0EX1 QX2 E 1,

(14)

where P0 is the total load on the plate and U denotes a unit step function.

4.2.2 Half sine pulse load (HL)

P(X, T)=
P0

(X2 −X1)
[U(X−X1)−U(X−X2)]{1−U(T− t1)} sin (pT/t1);

0EX1 QX2 E 1, (15)

where t1 is the duration of HL.

4.3.  

The plate is subjected to two types of edge conditions:

4.3.1. Clamped at both the edges (C–C)

For this condition W=W,X =0 at X=0 and X=1, which reduces to

Wj =Wj,X =0 at X=0 and X=1. (16)

4.3.2 Clamped at X=0 and free at X=1 (C–F)

For this condition W=W,X =0 at X=0 and W,XX =W,XXX =0 at X=1, which
leads to

Wj =Wj,X =0 at X=0 and Wj,XX =Wj,XXX =0 at X=1. (17)

4.4.   

For the sake of convenience the suffix j is suppressed in free vibration analysis.

4.4.1. Frequency equation

For a C–C plate, the edge conditions (16) give

d1 + d3 =0, −1·5d1 + l1d2 −1·5d3 + l2d4 =0,

C1d1 +S1d2 +C2d3 +S2d4 =0,
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(l1S1 −1·5C1)d1 + (l1C1 −1·5S1)d2 − (l2S2 +1·5C2)d3 + (l2C2 −1·5S2)d4 =0,

(18)

where

C1 = cosh {l1 log (1+ b)}, S1 = sinh {l1 log (1+ b)},

C2 = cos {l2 log (1+ b)}, S2 = sin {l2 log (1+ b)}. (19)

The corresponding frequency equation is

l1l2(C2 −C1)2 + (l1S2 − l2S1)(l2S2 + l1S1)=0. (20)

For a C–F plate, the edge conditions (17) gives

d1 + d3 =0, −1·5d1 + l1d2 −1·5d3 + l2d4 =0,

(e1C1 − e3S1)d1 + (e1S1 − e3C1)d2 + (e4S2 − e2C2)d3 + (−e4C2 − e2S2)d4 =0,

( f1S1 − f3C1)d1 + ( f1C1 − f3S1)d2 + ( f4C2 − f2S2)d3 + ( f4S2 − f2C2)d4 =0, (21)

where

e1 = l2
1 +3·75, e2 = l2

2 −3·75, e3 =4l1, e4 =4l2,

f1 = l1(l2
1 +17·25), f2 = l2(l2

2 −17·25), f3 =7·5l2
1 +13·125,

f4 =7·5l2
2 −13·125.

The corresponding frequency equation is

a1b2 − a2b1 =0, (22)

where

a1 = e1C1 − e3S1 + e2C2 − e4S2, b1 = l2(e1S1 − e3C1)+ l1(e2S2 + e4C2),

a2 = f1S1 − f3C1 − f2S2 − f4C2, b2 = l2( f1C1 − f3S1)+ l1( f2C2 − f4S2).

The countably infinite roots of these frequency equations are the natural
frequencies Vj for various normal modes of transverse vibration of the plate.

4.4.2. Mode shape

The mode normalization condition (6) is used for determining the unique
solution for W. The solution is

W(X)= (1+ bX)−1·5Z(X)[2l1l2b/H0f(b)]1/2, Z(X)=S(X)[q r −q 1]'

(23)

f(b)= l1l2(2q2 − r2 +1) log (1+ b)+S1l2{(q2 + r2)C1 +2qrS1}

+ l1S2{(q2 −1)C2 −2qS2}

+ {−q2(l1S1C2 + l2C1S2)+ q(l1S1S2 − l2C1C2)

− qr(l1C1C2 + l2S1S2)

+ r(l1C1S2 − l2S1C2)}[4l1l2/(l2
1 + l2

2 )], (24)
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where

r=−l2/l1, q=6(l2S1 − l1S2)/l1(C1 −C2),
b1/l1a1,

for C–C case,
for C–F case,7.

4.5.   

The loading conditions, given by equation (14) or (15), and the mode shape
function, given by equation (23) as the case may be, are substituted in equation
(10). The Gj (T) thus obtained are substituted in equation (11). The casewise results
obtained are as follows:

4.5.1. C–C or C–F plate subject to CL

gj (T)=Pj [1−cos (VjT)]/V2
j , Pj =P0[fj (X2)−fj (X1)], (25)

Figure 1. W0 versus T for Ha =0·05: (a) C–C, CL (X=0·5); (b) C–C, HL (X=0·5); (c) C–F,
CL (X=1·0) and (d) C–F, HL (X=1·0) for various value of b. Key: —w—, −0·7; —R—, −0·3;
—r—, 0·3; —Q—, 0·7.
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Figure 2. W0 versus X for Ha =0·05: (a) C–C, CL (T=15); (b) C–C, HL (T=15); (c) C–F, CL
(T=75) and (d) C–F, HL (T=75) for various value of b. Key as for Figure 1.

fj (X)= (1+ bX)−1/2{1/(0·25− l2
1j )}[(−0·5qj − l1jrj ) cosh {l1j log (1+ bX)}

+ (−l1jqj −0·5rj ) sinh {(l1j log (1+ bX))}]

+ {1/(0·25+ l2
2j )}[(0·5qj − l2j ) cos {(l2j log (1+ bX))}

+ (−0·5− qjl2j ) sin {l2j log (1+ bX)}]][2l1l2b/H0f(b)]1/2. (26)

4.5.2. C–C or C–F plate subjected to HL

gj (T)=6 Pjt1[p sin (VjT)−Vjt1 sin (pT/t1)]/[Vj (p2 −V2
j t2

1 )],
2Pjpt1[sin {Vj (T− t1/2)} cos (Vjt1/2)]/[Vj (p2 −V2

j t2
1 )],

when TQ t1,
when Te t1,7.

(27)

The substitution of unique mode shape Wj (X) given by equation (23) and gj (T)
from equation (25) or (27), as the case may be, in equation (7) gives the transverse
deflection W(X, T) for forced motion.
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5. RESULTS AND DISCUSSION

The variation in thickness is taken in such a way that the average thickness of
the plate, ha , remains constant by taking

g
a

0

h0(1+ bx/a)2 dx= aha ,

which leads to

H0 =2Hab/[(1+ b)3 −1],

where Ha = ha /a.
The frequencies Vj from equations (19) and (22) are computed by the bisection

method up to an accuracy of five decimal places. The series of W (equation (7))
is summed up to 14 terms, which ensures an accuracy of four decimal places.

Figure 3. W0 versus X for Ha =0·05 and b=0·5: (a) C–C, CL; (b) C–C, HL; (c) C–F, CL and
(d) C–F, HL for various value of T. Key: —w—, 5(a), 10(b), 25(c), 35(d); —R—, 10(a), 15(b), 35(c),
45(d); —r—, 15(a), 20(b), 45(c), 55(d); —Q—, 20(a), 25(b), 55(c), 65(d).



1.00

12 000

X

W
o

8000

4000

0.25 0.750.00

(c)

1.00

80

40

20

0.25 0.750.00

(d)

0

400

(a)

0

5

(b)

0.50 0.50

15

800

200

10

0 0

60

600

-   263

Numerical results are computed for W0 =W/P0 for various values of b, X, T
by taking n=0·3, Ha =0·05 and t1 =2p/V1, where V1 is the fundamental
frequency.

The graphs for various values of b for W0 at X=0·5 versus T for the C–C plate
are plotted in Figures 1(a) and (b) and for W0 at X=1·0 versus T for C–F plates
are plotted in Figures 1(c) and (d) for CL and HL respectively. Figure 1(a) shows
that with the increase in b the deflection first decreases and then increases.
Figures 1(b–d) show that the deflection increase with the increase in b. The peaks
are seen on one side of the plate for CL and alternatively on both sides of the plate
of HL.

The graphs for various values of b for W0 at T=15 versus X for C–C plate
are plotted in Figures 2(a) and (b) and for W0 at T=75 versus T for C–F plates
are plotted in Figures 2(c) and (d) for CL and HL respectively. Figure 2(a) shows

Figure 4. W0 versus X for Ha =0·5 and b=−0·5: (a) C–C, CL; (b) C–C, HL; (c) C–F, CL and
(d) C–F, HL for various value of T. Key: —w—, 5(a,b), 50(c,d); —R—, 10(a,b), 100(c,d); —r—,
15(a,b), 150(c,d); —Q—, 20(a,b), 200(c,d).
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that the deflection first decreases and then increases with increase in b.
Figures 2(b–d) show that the deflection increases with the increase in b.

The graphs of W0 versus X for b=0·5 for various values of T for C–C plate
are plotted in Figures 3(a) and (b) and for C–F plates in Figures 3(c) and (d) for
CL and HL respectively. In all these figures the deflection first increases then
decreases after attaining its maximum value.

The graphs of W0 versus X for b=−0·5 for various values of T for C–C plate
are plotted in Figures 4(a) and (b) and for C–F plates in Figures 4(c) and (d) for
CL and HL respectively. Similar variation as in Figure 3 is observed here.
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